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Abstract—Thermostatically controlled load (TCL, such as
heating, ventilation, and air conditioning system) is a desirable
demand-side flexibility source in distribution networks. It can
participate in regulation services and mitigate power imbalances
from fluctuating distributed renewable generation. To effectively
utilize the load flexibility from spatially and temporally dis-
tributed TCLs in a distribution network, it is necessary to
consider power flow constraints to avoid possible voltage or
current violations. Published works usually adopt optimal power
flow models (OPF) to describe these constraints. However, these
models require accurate topology of the distribution network that
is often unobservable in practice. To bypass this challenge, this
paper proposes a novel learning-based OPF to optimize TCLs for
regulation services. This method trains three regression multi-
layer perceptrons (MLPs) based on the distribution network’s
historical operation data to replicate its power flow constraints.
The trained MLPs are further equivalently reformulated into
linear constraints with binary variables so that the optimization
problem becomes a mixed-integer linear program that can be
effectively solved. Numerical experiments based on the IEEE 123-
bus system validate that the proposed method can achieve better
TCL power scheduling performance with guaranteed feasibility
and optimality than other state-of-art models.

Index Terms—Optimal power flow, demand-side feasibility,
regulation capacity, neural network, security constraint,

I. INTRODUCTION

TO diminish fossil fuel consumption and mitigate global
warming, distributed renewable generation has been

broadly integrated into distribution networks. In 2020, newly
installed renewable generation capacity has reached to 198
GW [1]. However, the growing penetration of distributed
renewable generation provokes a vital threat to system stability
since its intermittent and stochastic characteristics probably
aggravate the imbalance between the demand- and generation-
sides [2]. Thus, more flexible resources are required to partic-
ipate in regulation services [3], [4].

Operation flexibility is traditionally provided by generating
units, such as thermal or gas turbine power plants, which
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are usually costly and carbon-intensive [5]. With the progress
of information and communication technologies, utilizing
demand-side flexibility is becoming feasible and economical
[6], [7]. The power consumption of thermostatically controlled
loads (TCLs), such as heating, ventilation, and air condition-
ing (HVAC) systems, accounts for a large share in cities’
total power consumption. Due to the inherent heating/cooling
storage ability of buildings, power scheduling of TCLs can
be adjusted temporally with mild impacts on indoor thermal
comforts [8], [9]. Many scholars have focused on how to
schedule these TCLs to utilize their load flexibility as the
regulation capacity for the minimization of the operation cost.
References [10], [11] developed virtual battery models to
evaluate or utilize the building thermal flexibility. In [12],
a stochastic programming method was proposed to investi-
gate the economic benefits of unlocking building flexibility.
Reference [13] proposed a three-stage method to maximize
the flexibility provided by district heating systems. In [14],
the thermal inertia of district heating systems were exploited
to provide flexibility to improve the utilization of distributed
renewable generation. Reference [15] developed a model-
predictive-control-based optimization framework to coordinate
HVAC systems with distribution networks. Reference [16] ag-
gregated multiple demand-side flexibility sources (e.g. HVAC
loads, battery systems) in a three phase unbalanced network
to support regulation services. References [17], [18] proposed
optimal control strategies for the operation of TCLs and
confirmed that providing frequency regulation and ensuring
occupants’ thermal comfort can be achieved simultaneously. In
[19], an experiment was conducted to verify that HVAC sys-
tems in commercial buildings can serve as frequency reserves
providers to tracking automatic generation control signals.

Because many TCLs are usually connected to a distribution
network, their operations shall satisfy the distribution net-
work’s security operation constraints. However, the majority
of the aforementioned papers, e.g. references [10]–[13], [17],
[18], do not consider power flow constraints so that the ob-
tained strategies may lead to voltage or current violations. To
tackle this challenge, some other papers, e.g. references [14]–
[16], adopt optimal power flow (OPF) models to consider the
security constraints of distribution networks. However, OPF
models require accurate topology information of a distribution
network that is often unavailable because of unaware topology
changes or inaccurate data maintenance [20].

Due to the widespread use of smart meters, obtaining the
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historical operation data (i.e. bus power injections, bus volt-
ages and line currents) becomes easier and cheaper. Thus, data-
driven methods are paid attention recently for power schedul-
ing in distribution networks. Generally speaking, three types
of model-free methods have been proposed in the published
papers to utilize the load flexibility from TCLs. The first type
is reinforcement learning (RL) based methods. For example,
reference [21] employed RL to maximize residential demand
flexibility in distribution networks and reference [22] adopted
RL for the control of battery energy storage systems to allay
overvoltage issues. RL is fully data-driven and can optimize
the power dispatch without topology. However, these RL-based
methods require significant iterations of “trial-and-errors” for
training, which can be quite expensive and can not guarantee
optimality and feasibility theoretically. The second type is
called “DeepOPF” proposed in [23]. DeepOPF trained a neural
network to build the mapping between nodal power injections
and the solution of optimal power flow models so that the
solving procedure can be accelerated. However, it requires
solutions of an optimal power flow model as data labels to
train neural networks, so the topology is still indispensable.
The last type is the classification-based method proposed in
[24], [25]. This method trained a binary-classification multi-
layer perceptron (MLP) to judge whether there is constraint
violation with the given decision variables (i.e. judge the
feasibility of solutions). Then, the MLP was reformulated into
mixed-integer constraints to replicate power flow constraints.
This method can also schedule TCLs without the topology
because only historical operational data is required for the
MLP training. Nevertheless, if we use this method to maximize
the regulation capacity from TCLs, then the optimal solution
may lie on the classification boundaries of the trained MLP.
In that case, a desirable solution can be obtained only if these
boundaries are well identified, which needs sufficient data
samples near the boundaries. Unfortunately, most of the his-
torical data samples are in normal conditions that are usually
far away from boundaries in practice. Thus, this method may
not be able to derive high-quality feasible solutions.

To overcome the aforementioned challenges, we propose
a novel data-driven OPF model for the power scheduling of
TCLs. Our major contributions are threefold:

1) We propose a novel learning-based OPF model by repli-
cating power flow constraints and power loss calculation
with trained regression MLPs. This model only needs
historical operational data but does not require the topol-
ogy. We further apply this model to the power scheduling
of spatial-temporally distributed TCLs to provide regu-
lation capacity to demonstrate its effectiveness.

2) We propose a new index called “safe distance,” which
quantitatively describes the degree of power flow con-
straint violations, as prediction targets of the regression
MLPs to improve the feasibility of the proposed method.
Based on the safe distance, the regression MLPs can well
identify the feasible/infeasible boundaries of power flow
constraints even without samples near the boundaries.

3) Considering that the trained MLPs are intractable, we
propose a linearization technique to explicitly convert

them into linear constraints with binary variables. Then,
the proposed TCL power scheduling problem subject to
power flow constraints (replicated by MLPs) is refor-
mulated into a mixed-integer linear program that can be
efficiently solved by the Branch-and-Bound algorithm in
off-the-shelf solvers with guaranteed optimality.

Numerical experiments based on the IEEE 123-bus test system
are conducted to validate the proposed method. The results
show that the proposed method can effectively utilize flexi-
bility from TCLs to provide regulation services and promote
renewable generation integration. Furthermore, even without
rigorously describe power flow models, the proposed strategy
can meet the security operation constraints well.

The remaining parts are organized as follows. Section II
describes the problem formulation. Section III presents the
construction of the proposed learning-based model. Section IV
shows simulation results and Section V concludes this paper.

II. PROBLEM FORMULATION

We consider a distribution network with multiple buildings
equipped with flexible TCLs and distributed renewable gen-
erators. In this paper, we focus on how to find an optimal
power scheduling strategy of TCLs to reduce their energy
costs and even make revenue by providing regulation capacity
to power systems. Meanwhile, this strategy shall satisfy the
operation security constraints of the distribution network and
thermal comfort requirements of the buildings. Without loss
of generality, we use HVAC systems and PV generation as
examples to represent the TCLs and distributed renewable
generation in this paper, respectively.

A. Modeling of distribution network

1) Energy cost: We use t P T to index the t-th time slot
(T “ t1, 2, ¨ ¨ ¨ , T u) and variable Gg,–

t to represent the net
power at the root node (substation) of the distribution network
during t, in kW. Then, the energy cost of the distribution
network for each time slot ECt can be expressed as follows

ECt “

#

ηbuyGg,–
t ∆t, Gg,–

t ě 0,

ηsellGg,–
t ∆t, Gg,–

t ă 0,
@t P T , (1)

where ∆t is the length of one time slot; parameters ηbuy

and ηsell represent the per-unit prices of electricity purchasing
and selling, in $/MWh; variable Gg,–

t is the baseline net
active power at the substation in time slot t. To directly
express the different purchasing and selling prices in one
time, two auxiliary variables Gbuy

t and Gsell
t are introduced

to equivalently express Gg,–
t , as follows

Gbuy
t ´Gsell

t “ Gg,–
t , Gbuy

t ě 0, Gsell
t ě 0, @t P T . (2)

Then, Eq. (1) can be expressed as

ECt “ pη
buyGbuy

t ´ ηsellGsell
t q∆t, @t P T . (3)

2) Regulation revenue: The distribution network can utilize
TCLs’ load flexibility to provide regulation capacity to the
power system and make profit. The corresponding revenue
(termed as regulation revenue), Rt, is determined by the
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available capacity of the load flexibility provided by the entire
distribution network during t, which can be expressed as [16]:

Rt “ rdown
t Capdown

t ` rup
t Cap

up
t , @t P T , (4)

where rdown
t and rup

t are the per-unit regulation down and
up prices, in $/MW; Capup

t and Capdown
t are the flexibility

capacities for regulation up and down during t. These two
capacities represent the capabilities to adjust the profile of the
net active power at the substation from the baseline value,
which quantifies the operational flexibility provided by TCLs
and are defined as follows:

Capup
t “ Gg,–

t ´Gg,_
t , Capdown

t “ Gg,^
t ´Gg,–

t ,@t P T , (5)
Gg,^

t ď Gg,–
t ď Gg,_

t , @t P T , (6)

where variables Gg,^
t and Gg,_

t denote the upper and lower
bounds of the net active power at the substation. Note the
down regulation requires the distribution network to increase
its loads, so Gg,^

t ´Gg,–
t represents the capacity for regulation

down. Similarly, the capacity for regulation up is expressed as
Gg,–

t ´G
g,_
t . This manner for quantifying operational flexibility

is also adopted in some other references, e.g., [10], [16].
According to Eqs. (3) and (4), the energy cost depends

on the actual net active power Gg,–
t (the baseline), while

the regulation revenue is determined by the capacities for
regulation up and down, i.e., Capup

t and Capdown
t (these two

capacities are constrained by Gg,^
t and Gg,_

t ). Thus, the three
net active powers, i.e., Gg,–

t , Gg,^
t and Gg,_

t , will be optimized
at once in our problem. We adopt subscripts ^, – and _ to
denote variables relevant to the corresponding scenarios (i.e.
baseline scenario for Gg,–

t , upper bound scenario for Gg,^
t and

lower bound scenario for Gg,_
t ), respectively.

3) Power flow model: Conventional power flow models are
based on topology information. Since this paper focuses on the
radial distribution network, the voltage and current magnitudes
can be calculated by the DistFlow model [26], as follows1:
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ř

kPCj
Pjk,t “ pj,t ` Pij,t ´ rijI

2
ij,t,

ř

kPCj
Qjk,t “ qj,t `Qij,t ´ xijI

2
ij,t,

V 2
j,t “ V 2

i,t ´ 2prijPij,t ` xijQij,tq

`pr2ij ` x
2
ijqI

2
ij,t,

I2ij,t “
P 2

ij,t`Q2
ij,t

V 2
i,t

,

@pi, jq P B,@t P T ,

(7)

where Pij,t and Qij,t are the active and reactive power flows
on branch pi, jq, respectively; pj,t and qj,t denote the active
and reactive power injections on bus j, respectively; Vi,t
and Iij,t are the magnitudes of the voltage at bus i and
current on branch pi, jq, respectively; rij and xij denotes the
resistance and reactance of branch pi, jq, respectively. Symbol
B represent the index set of branches. Set Cj contains the child
bus indexes of bus j. Based on the power balance, the values
of net active powers can be calculated by

Gg
t ` 1ᵀpt “ lt, @t P T . (8)

1We omit the subscript t^, –,_u in this subsection for convenience.

where pt and lt are the active power injections at each bus
(except the slack bus) and total power loss in the distribution
network, respectively. The active and reactive power injections
at all buses (except the slack bus), i.e., pt and qt, can be
represented by the power generated at the bus minus the power
consumed, as follows:

pt “ ´p
HV
t ´ pe

t `G
PV
t , qt “ ´q

HV
t ´ qe

t , @t P T , (9)

where pHV
t and qHV

t represent the active and reactive power
consumption of HVAC systems; pe

t and qe
t denote the active

and reactive base loads (i.e. the loads apart from HVACs). The
actual PV generation GPV

t is upper bounded by the available
PV power Gmax

t (determined by solar radiation)2:

GPV
t ď Gmax

t , @t P T . (10)

To ensure the distribution network’s security operation, the
magnitudes of its bus voltages and line currents shall not
violate their allowable ranges:

Vmin ď Vt ď Vmax, It ď Imax, @t P T , (11)

where Vt and It are the vector forms of vi,t and Iij,t, respec-
tively. Vectors Vmin, Vmax, and Imax determine the feasible
regions of bus voltages and line currents.

When the topology is available, we can calculate the net
active power Gg

t and involve the voltage and current limitations
based on the power flow model. However, as mentioned
in Section I, the topology is often unknown. In this case,
the power flow model can not work properly to ensure the
operation security of the distribution network.

B. Modeling of building thermal dynamics

This subsection models buildings’ operational flexibility for
providing regulation services based on their inherent thermal
inertia [10], [16]. To simplify the problem, we aggregate all
buildings in the same distribution node as a large pseudo build-
ing. Based on the energy conservation, the indoor temperature
dynamics of each pseudo building is

Ci

dθin
i,t

dt
“
θout
t ´ θin

i,t

λi
` hh

i,t ´ h
c
i,t, @i P I,@t P T , (12)

where i is the index of distribution nodes or the corre-
sponding pseudo buildings, i P I; symbols θin

i,t and θout
t

denote the temperatures of indoor and outdoor environments,
in °C, respectively. We use hh

i,t and hc
i,t to represent heat

load contributed by indoor sources (e.g. humans and electric
devices) and cooling supply to building i, in kW, respectively.
Parameter Ci is the heat capacity of building i. Parameter
λi is the thermal resistance between the indoor environment
of building i and the ambience. Eq. (12) can be further
transformed into a linear form with the forward difference
method, as follows:

θ
in,t^,–,_u
i,t “αiθ

in,–
i,t´1 ` βiph

h
i,t´1 ´ h

c,t^,–,_u
i,t´1 q

` γiθ
out
t´1, @i P I,@t P T ,

(13)

2Note that we assume the PV generation only outputs active power here.
The proposed method can be readily extended to consider reactive PV power.
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where αi “ 1´∆t{pRiCiq, βi “ ∆t{Ci and γi “ ∆t{pRiCiq.
Note that the indoor temperature in the previous time slot is
θin,–
i,t´1 for all the three scenarios rather than θin,t^,–,_u

i,t´1 because
the regulation up/down capacities are always calculated based
on the baseline working state. To prevent thermal discomforts,
the indoor temperature should be restricted in a proper range

θ ď θ
in,t^,–,_u
i,t ď θ, @i P I,@t P T , (14)

where θ and θ are the lower and upper bounds of comfortable
range, respectively. The active and reactive power consumption
of HVAC systems are in proportion to the cooling supply

p
HV,t^,–,_u
i,t “ h

c,t^,–,_u
i,t {COPi, @i P I,@t P T , (15)

q
HV,t^,–,_u
i,t “ φi ¨ p

HV
i,t , @i P I,@t P T , (16)

where COPi denotes the coefficient of performance of HVAC
system; parameter φi is the ratio of HVAC’s active load to
the corresponding reactive load. Due to device limitations,
the active and reactive power consumption of HVAC systems
should be upper bounded by their maximum allowable values:

p
HV,t^,–,_u
t ď p, q

HV,t^,–,_u
t ď q, @t P T . (17)

C. Optimization problem formulation

We aim to schedule the cooling supply to minimize the
energy cost minus regulation revenue. Meanwhile, the opera-
tional security constraints of the distribution network and the
indoor thermal comforts of the buildings should not be violated
after applying our TCL power scheduling strategy. Thus, the
optimization problem is expressed as

min
qc
t,@tPT

T
ÿ

t“1

pECt ´Rtq, (P1)

s.t. Eqs. (2)-(6),{(7)-(11)}t^,–,_u, (13)-(17).

We use superscript t^, –,_u to mark the constraints in
triplicate. For example, (7)t^,–,_u represents that constraint
(20) will be replicated three times for the baseline, upper
bound and lower bound scenarios, respectively. Eqs. (2)-(3)
describe the calculation method of energy cost; Eqs. (4)-
(6) calculate the available regulation capacities; Eqs. (7)-(11)
present power flow constraints and Eqs. (13)-(17) represent the
building thermal dynamics. By solving P1, we can quantify
the feasibility of TCLs based on Eq. (5) and obtain the best
operational strategy.

Unfortunately, solving P1 is challenging because it is based
on the power flow model and needs accurate topology infor-
mation of the distribution network that is often unavailable.
Without the topology, we can not even establish the power
flow constraints successfully. In this case, solving P1 may
become an impossible task. On the contrary, the historical data
(i.e. power injections, bus voltages, and line currents) is easy
to acquire with low costs due to the widespread use of smart
meters. Thus, we propose a data-driven learning-based method
to tackle it in the following section.

Magnitude of voltage

M
ag

ni
tu

de
 o

f c
ur

re
nt C

A

feasible region

infeasible region

sample

safe distance (positive)

safe distance (negative)

feasible/infeasible boundary

B

D

Fig. 1. Schematic diagram of the safe distances. Both of the points A and B
locate in the safe region with positive safe distances. Point B has larger safe
distances compared to point A. Both of the points C and D lie in the unsafe
region with at least one negative safe distance.

III. LEARNING-BASED OPTIMIZATION MODEL

A. Safe distance of security constraint

Firstly, in order to qualitatively describe the level of security
constraint violations, we introduce two indicators, dv

t and dc
t,

to describe the voltage and current safe margins, termed as
“safe distances”, as follows:

dv
t “ δ ´maxt|Vi,t ´ 1|,@i P Iu, @t P T , (18)
dc
t “ mint1´ Iij,t{Iij,max,@pi, jq P Bu, @t P T , (19)

where, parameter δ is the allowable maximum bus voltage
fluctuation (e.g. if the allowable voltage range is [0.9 p.u., 1.1
p.u.], then δ “ 0.1 p.u.); parameter Iij,max is the maximum
allowable magnitude of line current on branch pi, jq. Note the
safe distances in Eqs. (18) and (19) are based on the magnitude
values. Thus, even if the current is a complex number or
becomes negative, the violations of the line current limitation
can still be obtained based on Eq. (19).

Obvious, the security constraint (11) can be satisfied only
if all safe distances defined above are nonnegative:

dv
t ě 0, dc

t ě 0, @t P T . (20)

The voltage and current violations can be expressed as

ψv
t “ maxt´dv

t , 0u, ψc
t “ maxt´dc

t, 0u, @t P T . (21)

Fig. 1 is the schematic of the safe distances, in which the
“safe region” refers to the space that has no violated security
constraint. The horizontal and vertical axes represent the
magnitudes of the line current and bus voltage, respectively.

B. Learning-based model for replicating security constraints

We assume that the historical data (i.e. power injections, bus
voltages and line currents) is available. Instead of using the
power flow model to build the voltage and current limitation,
i.e. Eq. (11), we train two regression MLPs to predict the
voltage and current safe distances, respectively. A typical MLP
is composed of one input layer, K hidden layers, and one
output layer, as shown in Fig. 2. Each neuron is made up
of one linear mapping and a nonlinear activation function.
In this paper, ReLU is employed as our activation function.
Symbols k and nk are used to index the hidden layers
(k P K “ t1, ¨ ¨ ¨ ,Ku) and neurons in the k-th hidden layer
(nk P Nk “ t1, ¨ ¨ ¨ , Nku). The inputs of MLPs are defined
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Fig. 2. Structure of an example MLP with 3 hidden layers. Each hidden
layer is composed of 3 neurons. Symbols zkn and hk

n represent the outputs
of the linear mapping and activation function at the n-th neroun in layer k ,
respectively. Symbol d is the final output of this MLP.

as the active and reactive power injections defined in Eq. (9),
which are controllable variables, as follows:

xt “ rpt, qts, @t P T . (22)

Then, the safe distances d
{v,c}
t can be predicated by two

different regression MLPs, as follows:

h
0,{v,c}
t “ xt, @t P T , (23)

z
k,{v,c}
t “W k,{v,c}h

k´1,{v,c}
t ` bk,{v,c},@k P K{v,c},@t P T ,

(24)

h
k,{v,c}
t “ maxpz

k,{v,c}
t , 0q, @k P K{v,c},@t P T , (25)

d
{v,c}
t “WK`1,{v,c}hK,{v,c} ` bK`1,{v,c}, @t P T , (26)

where hk
t P RNk is the output of layer k; parameters W k P

RNkˆNk´1 and bk P RNk are the weight matrix and bias of
layer k, which are parameters to be trained. Eq. (23) defines
the input layers of the two MLPs; Eqs. (24) and (25) define
the linear mapping and nonlinear activation functions in each
hidden layer, respectively; Eq. (26) defines the output layer.
We add subscript {v,c} in these equations to express two MLPs
(one for voltage and one for current) as an unified form. For
example, equation h0,{v,c}

t “ xt in Eq. (23) is equivalent to
h0,v
t “ xt and h0,c

t “ xt.

We present an example case here to demonstrate why
the proposed method can achieve better performance than
the state-of-art classification-based method. Suppose that the
historical samples are distributed as shown in Fig. 3, and
the true feasible/infeasible boundary is b. Then, no matter
which line in the candidates (i.e. lines a, b, and c) are
predicted as the boundary, the classification accuracy is always
100%. However, if line a is chosen as the boundary, then the
space between a and b can no longer serve as the feasible
region in this method, so the corresponding solution may
be overly conservative. If line c is treated as the boundary,
then the feasibility of solutions can not be ensured because
the corresponding solution may lie in the infeasible region
between b and c. Thus, only if we have enough samples
near the true boundary (i.e. line b), this method can find the
true boundary and derive desirable solutions with guaranteed
optimality and feasibility. Conversely, even if we only have
a small number of samples near the boundary, the proposed
regression-based model can utilize the safe distances of sam-
ples to exactly identify the specific position of the boundary.
Thus, it can achieve better performance than the classification-
based method in practice.

a cb
sample
safe region

unsafe region

Fig. 3. An example case to illustrate why the classification-based method can
not guarantee optimality and feasibility.

C. Learning-based model for power loss calculation

As mentioned in Section II-A, the net active power at
the substation, i.e., Gg

t can be calculated based on Eq. (8).
In Eq. (8), the term 1ᵀpt is easy to obtain because pt is
the controllable variable. However, the total power loss lt is
affected by the line current on each branch. Traditionally, these
line currents are calculated based on the power flow model.
Thus, if the topology is unavailable, the value of lt is hard to
obtain. To overcome this challenge, we train another regression
MLP to predict the power loss without the topology. Then, the
power loss can be expressed as

h0,l
t “ xt, @t P T , (27)

zk,lt “W k,lhk´1,l
t ` bk,l, @k P Kl,@t P T , (28)

hk,l
t “ maxpzk,lt , 0q, @k P Kl,@t P T , (29)

lt “W
K`1,lhK,l ` bK`1,l, @t P T . (30)

After training, parameters W k,l and bk,l can be obtained.
Then, power loss calculation can be replicated by the forward
propagation of the trained MLP, i.e., Eqs. (27)-(30).

Remark 1. In essence, the proposed method trains three
regression MLPs to approximate power flow constraints, i.e.,
Eqs. (7)-(11), in which only historical data (i.e. power injec-
tions, bus volatges and line currents) are required. Then, the
voltage, current limitations and power loss calculation can be
replicated by the forward propagation of the trained MLPs,
i.e., Eqs. (23)-(26) and (27)-(30).

D. Reformulation of the regression-based model

The forward propagation of the trained MLPs, i.e., con-
straints (23)-(26) and (27)-(30), build the mappings from
power injections to the safe distances and power loss. As
mentioned in Section III-A, the voltage and current limitations
require nonnegative safe distances, i.e. Eq. (20). Then, based
on Eqs. (20), (23)-(26) and (27)-(30), the voltage/current
limitations and power loss calculation be replicated without
the network topology. However, due to the inside maximum
operator, constraints (25) and (29) are intractable and can
not be directly handled by off-the-shelf solvers. Thus, a
linearization technique is required to make these constraints
tractable. Inspired by [27], we reformulate Eqs. (24)-(25) and
(28)-(29) into tractable linear constraints based on the big-
M method by introducing auxiliary variables rk,{v,c,l}

t and
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µ
k,{v,c,l}
t , as follows:
$

’

’

’

’

’

&

’

’

’

’

’

%

h
k,{v,c,l}
t ´ r

k,{v,c,l}
t “W k,{v,c,l}h

k´1,{v,c,l}
t ` bk,{v,c,l},

0 ď h
k,{v,c,l}
t ďM ¨ µ

k,{v,c,l}
t ,

0 ď r
k,{v,c,l}
t ďM ¨ p1´ µ

k,{v,c,l}
t q,

µ
k,{v,c,l}
t P t0, 1uN

{v,c,l}
k ,

@k P K{v,c,l},@t P T , (31)

where M is a big enough constant. Then, the original problem
P1 can be reformulated into P2, which is defined as follows:

min
qc
t,@tPT

T
ÿ

t“1

pECt ´Rtq, (P2)

s.t.: Eqs. (2)-(10), (13)-(17),

{(20), (23), (26)-(27), (30)-(31)}t^,–,_u.

Remark 2. Neural networks are traditionally considered as
“black box” models that are not convenient for optimization
problems. In this section, we reformulate the proposed MLPs
into “white box” linear constraints with binary variables.
Then, the proposed TCL power scheduling problem P1 can be
reformulated as a mixed-integer linear program, P2. It then
can be solved efficiently by off-the-shelf solvers. Moreover, the
optimality of solutions can be also guaranteed.

Remark 3. We select MLPs instead of other state-of-art
learning-based models, such as Convolutional Neural Net-
works [28], Recurrent Neural Networks [29], [30], and Gen-
erative Adversarial Networks [31], to replicate the power flow
calculation. This is because we can easily convert MLPs into
tractable mixed-integer linear forms, while the rest models are
hard to reformulate. Thus, MLPs are more appropriate for the
OPF-based power scheduling than other models.

E. Procedure of the proposed method

Our key idea is to replace the power flow equations with
MLPs so that the power flow security constraints and power
loss calculation can be considered without the exact topol-
ogy. To better illustrate the key idea, we present the whole
procedure of the proposed method in Fig. 4. This method is
composed of the following four steps:

1) Data prepare: collect the historical data, including
power injections, bus voltages, and line currents. Then,
use this data to calculate the total power loss and safe
distances based on Eqs. (8), (18), and (19).

2) MLP training: train three MLPs for predicting current,
voltage safe distances, and power loss. Power injections
of samples are treated as inputs (features) of all three
MLPs. The current, voltage safe distances, and power
loss of samples are regarded as the outputs (labels) of
the three regression MLPs.

3) MLP reformulation: The trained MLPs can not be
directly treated as constraints in the optimization due to
the maximum operator in the ReLU activation function.
Thus, we reformulate Eqs. (24)-(25) and (28)-(29) into
linear constraints with binary variables, i.e. Eq. (31).

TABLE I
PARAMETERS IN CASE STUDY

Parameters Value Parameters Value
Ci 16.7 kWh/°C θ 24°C
Ri 0.3 °C/kW θ 28°C

COPi 3.6 P 0.1MW
φi 0.1 Q 0.03MW
δ 0.1

Then, the whole optimization problem becomes a mixed-
integer linear problem, which can be solved efficiently
by off-the-shelf solvers with guaranteed optimality.

4) Solving P2: solve P2 with the given heat loads and
power demands. Output the optimal operation strategy
for HVAC systems and PV plants.

It should be noted that if the topology of the distribution
system is changed by reconfiguration, the trained MLPs might
be inaccurate. However, in practice, there is usually only a
few switches for topology reconfiguration so that the number
of typical topology scenarios is very limited [32]. Since the
reconfiguration is usually controlled by the system operators,
the required switching state information is also known. As
a result, it is trivial for the operators to collect historical
operational data and train the MLPs for each different topology
scenario, respectively. Hence, the proposed model can be
readily extended to consider the scenarios with distribution
system reconfiguration operations.

Compared with the published model-free methods intro-
duced in Section I, the proposed learning-based method has
several advantages. Firstly, the proposed model is a mixed-
integer linear programming so that it can achieve guaranteed
optimality based on the mature branch-and-bound algorithm.
Moreover, it only needs the operational data and does not
require the topology information. In addition, based on the
safe distances, the feasible/infeasible boundaries can be well
identified with no need for a large amount of data near
the boundaries. Therefore, it can achieve better performance
compared to the classification-based methods.

IV. CASE STUDY

A. Simulation set up

The case study is based on the IEEE 123-bus system with
14 installed PV plants, as shown in Fig. 5. The slack bus
voltage, i.e., V1, is 2.40kV. The optimization time horizon
is 24h and the time step ∆t is 1h. The total heat load hh

t ,
total available PV generation Gmax

t , ambient temperature θout
t ,

active base load pe
t and reactive base load qt are illustrated in

Fig. 6. The unit prices for electricity purchasing/selling and
upward/downward regulations as shown in Fig. 7, which are
from [33], [34] and also adopted in [10]. Other parameters are
summarized in Table I.

We conducted a comprehensive simulation based on Pan-
dapower, a power system simulation toolbox in Python envi-
ronment [35], to generate the historical data. In Pandapower,
the power flow calculation is based on the full AC power
flow model. The feasible region S is constructed based on the
voltage constraint (i.e. all bus voltages should stay in [0.9 p.u.,
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Fig. 4. Procedure of the proposed learning-based method.
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Fig. 6. (a) Total heat load, ambient temperature, available PV generation, and
(b) total active/reactive based loads (except the demands of HVAC systems).

1.1 p.u.]) and current constraint (i.e. all line currents should
be less than 0.421 kA). We randomly generate bus injection
vectors xt and give them to Pandapower to calculate the state
variable st. Then, the safe distances of these generated samples
(i.e. dv

t and dc
t) and the corresponding power loss can be

calculated according to Eqs. (18), (19), and (8). We gather (xt,
dv
t), (xt, dc

t) and (xt, lt) to construct the training set for the
three regression MLPs, respectively. Finally, 20,000 samples
are generated as the historical dataset for each MLP. We have
also provided all the samples in [36].

All numerical experiments are implemented on an Intel(R)
8700 3.20GHz CPU with 16 GB memory. Our MLPs are
constructed and trained by Pytorch (batch size and maximum
epoch number are 256 and 500). To mitigate the overfitting of
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Fig. 7. Prices of (a) electricity purchasing/selling and (b) regulation up/down.

MLPs, we adopt the dropout technique proposed in reference
[37] during MLP training. We employ CVXPY to build our
optimization problem and GUROBI to solve it.

B. Benchmarks

To demonstrate the feasibility and optimality of the pro-
posed model, three benchmarks are introduced:

1) B1: Adopt the proposed model P1 but ignoring the
security operation constraint (11);

2) B2: Adopt the proposed model P1 and utilize DistFlow
model (relaxed as a second order cone) to describe
constraint (11);

3) B3: Adopt the proposed model P1 but utilize the binary
classification MLP adopted in references [24], [25] to
judge whether constraint (11) is satisfied or not.

Note that B2 can be regarded as an ideal method with
assumption that accurate topology is available. The learning-
based method B3 requires no topology information of the
distribution network. In its dataset, the features keep the same
as those in the proposed model, while the labels are determined
by the following rule: if the state variable st of a sample
satisfies Eq. (20), it is labeled as “safe”; otherwise, “unsafe”.
In the optimization step, we restrict the output as “safe” for
B3 to ensure the safe operation. For each model, the power
scheduling of TCLs in all the three scenarios (i.e. baseline
scenario for Gg,–

t , upper bound scenario for Gg,^
t and lower

bound scenario for Gg,_
t ) are optimized simultaneously. Then,
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Fig. 8. Performances of the four trained MLPs for (a) predicting current safe
distance in the proposed model (b) predicting voltage safe distance in the
proposed model, (c) predicting power loss in the proposed model, and (d)
classifying safe/unsafe operation state in B3.

all solutions are given to Pandapower again to obtain the actual
total costs, voltage and currents for validation.

C. Model feasibility, optimality, and time-efficiency

1) Performance of trained MLPs: Altogether four MLPs
are trained in our simulation. The first three are regression
MLPs and belong to the proposed model for the predictions of
current, voltage, safe distances and power loss. The forth MLP
belongs to B3 and is used for the safe/unsafe classification.
After careful hyper-parameter tuning, we set the hidden layer
numbers of all MLPs as 1. The corresponding neuron numbers
are set as 20 (for predicting current safe distance), 5 (for
predicting voltge safe distance), 5 (for predicting power loss)
and 100 (for classification in B3). Fig. 8 demonstrates the
training results of the above four MLPs. In Figs. 8(a), (b),
and (c), the horizontal and vertical axes are the actual and
predicted safe distances. The red line represents the position
where the prediction is equal to its actual value. Obviously,
all samples are very close to the red line, which implies the
high prediction accuracy of the three regression MLPs.

Although the accuracy of the classification MLP reaches to
95%, as shown in Fig. 8(c), this result still can not confirm
that the safe/unsafe boundary is well described. Suppose there
are 5% of the samples near the safe/unsafe boundary, then the
classification accuracy can still reach to 95% even all boundary
data is incorrectly classified. In other words, this high accuracy
may be majorly contributed by the samples far away from the
boundary. In that case, B3 may derive low-quality solutions if
it needs to make decisions that are close to the boundaries.

2) Current and voltage: In the upper bound scenario, the
system tries to maximize its total net load at substation to
enlarge the regulation capacity. Hence, the power flow in each
branch grows until the security constraints (i.e. the voltage
and current limitations) become active. In other words, this
scenario is the riskiest and its optimal solution will lie on
the safe/unsafe boundaries. Thus, we take the upper bound
scenario as an example to illustrate the superiority of the
proposed regression-based model. Fig. 9 presents the line
current and bus voltage of different models in the upper bound
scenario. Because that B1 ignores the security constraint, its

(a) (b)

(c) (d)

(e) (f)
Fig. 9. (a) Line current of the proposed model, (b) bus voltage of the proposed
model, (c) line current of B2, (d) bus voltage of B2, (e) line current of B3,
and (e) bus voltage of B3 in the upper bound scenario.

solution is infeasible for Pandapower. Thus, there is no result
of B1 in Fig. 9. The results of the proposed model are very
similar to those of the power-flow-model-based model B2.
Both the currents and voltages of the proposed model almost
stay in the corresponding safe regions. Conversely, the line
current of B3 exceeds its upper boundary, and the bus voltage
is also lower than 0.9 p.u. in many hours. As aforementioned,
the proposed model can utilize the safe distance information
to better identify the safe/unsafe boundaries. Thus, its solution
can perform better feasibility compared to B3.

3) Line current violations: Fig. 10 illustrates the maximum
line current violations of the upper and lower bound scenarios.
Pandapower can not find a feasible result for B1 due to the
negligence of security constraint. B3 replicates the power
flow security constraints with a classification MLP. However,
since the majority of the samples are far away from the feasi-
ble/infeasible boundaries, it fails to identify these boundaries
accurately. Thus, its current violations are still quite signif-
icant, i.e., up to 56.03%. In contrast, the proposed method
leverages the safe distances to pinpoint the boundaries, so the
maximum current violation of the proposed method is only
8.78%, which is pretty close to the performance of the ideal
method B2. These results confirm that the proposed model can
derive better solutions with higher feasibility compared to B3.

Unlike the baseline and upper bound scenarios, the lower
bound scenario tries to minimize the net load at substation
or even sell surplus PV power to the upper-level grid (in that
case, the total net load is negative). As shown in Fig. 10(b),
the current violations only appear in the hours with high PV
power when there is strong inverse power flow in the system.
Similar to the upper bound scenario, the proposed model has
similar performance with the ideal model B2 and outperforms
models B1 and B3, significantly.

In the baseline scenario, the TCLs are coordinated to
promote local PV generation consumption so that the power
exchange between the main grid and distribution network is
minimized. Hence, the power flow on each branch maintains
at a low level, resulting in very small or even no violations in
all of the four strategies, so we do not present the violation
results of this scenario here.
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Fig. 10. Maximum line current violations in the (a) upper, and (b) lower
bound scenarios.
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Fig. 11. Maximum bus voltage violations in the upper bound scenario.

4) Bus voltage violations: The bus voltage violations of the
upper bound scenario are demonstrated in Fig. 11. The voltage
violations in the lower bound and baseline scenarios are not
shown here because they always maintain at a low level. In
the upper bound scenario, B1 derives the most dangerous
solution, while B2 achieves the lowest voltage violations but
requires the network topology. The maximum voltage violation
of B3 is much larger than that of the proposed model (e.g. the
maximum voltage violations of the proposed model and B3 are
0.003p.u. and 0.063p.u., respectively). These results confirm
that the proposed model can derive better solutions with higher
feasibility compared to B3.

5) Optimality of solutions: The actual energy costs and
regulation revenues are summarized in Table II. We treat
the power flow model B2 as our baseline. Obviously, the
results of the proposed model are much closer to our baseline
compared to the rest benchmarks. The total cost difference
is around 2.20% between the proposed model and baseline,
while this difference between B3 and baseline reaches to
9.86%. Moreover, both B1 and B3 drastically overestimate
the regulation revenues because they can not well describe
the safe/unsafe boundaries. The gaps between the proposed
and baseline models in the upward and downward revenues
are 9.60% and 0.03%, while these gaps become 43.58% and
7.35% when B2 is used. As for B1, these two gaps are infinite
(the strategy for the upper bound scenario obtained by B1 is
infeasible for Pandapower) and 10.77%. These results indicate
the great optimality of the proposed method.

6) Time efficiency: In the proposed learning-based method,
three MLPs are reformulated into linear constraints with binary

TABLE II
ENERGY COSTS AND REGULATION REVENUES

Model Total
Cost ($)

Energy
Cost ($)

Upward
revenue($)

Downward
revenue($)

Proposed 559.62 780.53 171.30 49.63
B11 – 786.93 – 55.00
B2 572.55 778.50 156.30 49.65
B3 516.10 793.82 224.42 53.30

1 The corresponding solutions for the upper bound scenario is infea-
sible for Pandapower.

TABLE III
TRAINING AND SOLVING TIMES OF THE PROPOSED METHOD

Time for MLP training (s) Time for solving P2 (s)
MLP11 MLP21 MLP31

12.79160.72 115.65 98.69
1 MLP1, MLP2, MLP3 are regression MLPs used in the pro-

posed method for predicting the current safe distance, voltage
safe distance, and total power loss.

variables, which may lead to a large-scale mixed-integer linear
problem and undesirable computational efficiency. To verify
the computational performance of the proposed model, we
summarize the solving time of different models in Table
III. The proposed method achieves excellent computational
efficiency, e.g., it only takes 12.79s for solving P2. This
high computational efficiency may be contributed by hyper-
parameter tuning. According to Eq. (31), the number of the
introduced binary variables is the same as the MLP’s neuron
number. Thus, we have conducted a careful hyper-parameter
tuning to minimize the neuron number while maintaining
enough accuracy for predictions. The final neuron numbers
are relatively small (i.e. 20, 5, and 5 for the MLPs for
predicting the current, voltage safe distances, and power loss,
respectively), so the computational burden of the proposed
model can keep at an acceptable level.

In summary, the results in Figs. 8, 10, 11, and Table II
demonstrate the excellent optimality, feasibility, and time-
efficiency of the proposed learning-based OPF model, which
confirms that the proposed model can accurately replicate the
original power flow constraints with no need for the topology.

D. Effectiveness of the building thermal flexibility

In this subsection, we conduct an analysis study based
on the results of the proposed model to demonstrate the
effectiveness of utilizing building thermal flexibility.

1) Net load profiles: Fig. 12 illustrates the actual net load
profile and its lower and upper bounds. In our simulation,
the net active power Gg

t is always limited by the line current
constraint between bus 1 and 2. Thus, the absolute value of
the active net power in the upper bound scenario, i.e., |Gg,^

t |,
almost keeps constant3. In the hours with low PV power (i.e.

3We observe that the value of |Gg,^
t | is approximately equal to I12,maxV1.

The objective of the upper bound scenario is to maximize G
g,^
t . Considering

that the total reactive power demand are much smaller than the total active

demand in our case study, we have |s^
1,t| “

c

`

G
g,^
t

˘2
`

´

q^
1,t

¯2
“

I^
12,tV1 « |G

g,^
t |, where |s1,t| is the magnitude of the apparent power

injection on the slack bus. Besides, the line current limitation requires
I^
12,t ď I12,max. Based on this, we know that Gg,^

t can take its maximum
value at I^

12,t “ I12,max. Then, we have |Gg,^
t | « I12,maxV1.
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Fig. 12. Actual net load profile and its upper and lower bounds.
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Fig. 13. Total PV generation in the baseline, lower and upper bound scenarios.

0:00am-11:00am and 18:00pm-24:00pm), the lower bound G_t
are almost the same with the actual net load profile Gg,–

t

because there is no extra PV power to sell. In the rest hours,
a lot of PV power is sold to the upper-level grid in the lower
bound scenario, while the extra PV power is converted as
cooling power and stored in building thermal inertia in the
baseline scenario. Thus, the lower bound profile is smaller
than the baseline and becomes negative in these hours, which
indicates that negative line currents appear in our simulation.
Nevertheless, the lower bound Gg,_

t is still restricted by
the line current limitation, so its magnitude is also close to
I12,maxV1. These results confirm that the proposed method can
work well with negative line currents in the system.

2) Actual PV generation: The actual PV generation is
shown in Fig. 13. The actual PV generation keeps the same
with the available PV power in both the baseline and lower
bound scenarios. As aforementioned, the surplus PV is sold
to the upper-level grid in the lower bound scenario, while
it is locally consumed in the baseline scenario. In contrast,
the upper bound scenario curtail part of the PV generation
to maximize the net load. As a result, there is a distinct gap
between the available and actual PV generation.

3) Local storage of PV power: Fig. 14 illustrates the total
heat load, cooling supply and indoor temperature variation of
the baseline scenario. The total heating load is the summation
of indoor contributed heat loads and heat transfer from the
outdoor environment (i.e. qh

i,t ` pθ
out
t ´ θin

i,tq{Ri). In the first
few hours, the available PV power is small, so the cooling
supply is identical to the heat load. From 11:00 am to 16:00
pm, the PV generation can fully cover the demands, and the
extra PV is converted into cooling power and stored in building
inertia locally for the later use. Thus, the cooling supply is
obviously higher than the heating load and significant temper-
ature drops occur in indoor environments. In the afternoon,
the available PV power decreases gradually and can not cover
the power consumption any more. Then, the stored cooling
power is released to compensate the demands, so the indoor
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Fig. 14. Results of (a) total heating load and cooling supply, and (b) indoor
temperatures of all buildings in the baseline scenario.

temperatures grow up gradually. As shown in Fig. 14(b), the
temperature drops in the PV nodes (i.e. nodes with installed
PV plants) are much faster and more significant than the non-
PV nodes during 12:00 am to 16:00 pm, which shows storing
and consuming PV generation locally is more economic.

V. CONCLUSIONS

A learning-based OPF model is proposed to optimize TCL
power schedules to improve operational flexibility for regu-
lation service and minimize the energy cost minus regulation
revenue. To involve the power flow security constraints, the
proposed model trains two regression MLPs based on the
historical operation data, which does not require the network
topology information that is often unavailable. To guarantee
the optimality of solutions, the trained MLPs are further
reformulated into linear constraints with binary variables. As a
result, the proposed model becomes a mixed-integer program-
ming that can be effectively solved by off-the-shelf solvers.
Simulation results demonstrate that the proposed method can
achieve better feasibility performance with much less security
constraint violations than published benchmark methods. The
derivation between the total costs of the proposed model
and an ideal power-flow-based model is less than 1%, which
confirms the high optimality of our approach. The results also
prove the effectiveness of utilizing building thermal inertia to
promote local renewable generation integration.

Note the core of the proposed model is the learning-based
OPF model, so it can be also applied to many other OPF-based
application cases, such as optimal coordination of distribution
networks and electric vehicles [38], economic dispatch of
combined heat and power units [39], and optimal power
dispatch of electricity-gas network [40].

Since the proposed model is based on historical data, it may
not work well in cases without enough data. Thus, we envision
our future work to extend the proposed method so that it can
be applied to those cases with few historical data.
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